FlexStream: Towards Flexible Adaptive Video Streaming on End Devices using Extreme SDN

Ibrahim Ben Mustafa
Old Dominion University
iben@cs.odu.edu

Tamer Nadeem
Virginia Commonwealth University
tnadeem@vcu.edu

Emir Halepovic
AT&T Labs – Research
emir@research.att.com

Motivation
- When HTTP Adaptive Streaming (HAS) players compete over the bottleneck:
 - Instability in the quality
 - Playback Stalls
 - Unfairness
 - Long startup delay
- Root cause: ON/OFF traffic pattern

Issues with Existing Solutions
- **Not effective**: they cannot address the main performance issues, and cannot comply with network policies.
- **Invasive**: Players have to follow specific adaptation logic.
- **Not generic**: Specific for HAS.
- **Costly**: Require large and special-purpose network infrastructure.
- **Infeasible (in practice)**: they require CDN edge server changes, or require player feedback and interactions.

Existing Solutions
- **Client-based solutions** (improving players' adaptation algorithm)
- **Edge-based solutions** (traffic management and control)

FlexStream Overview
1. **Data Collection**
 - Flow statistics (OVS), device context, user context
2. **Control & Management**
 - Resource allocation, admin policies
3. **Video Player**
 - Device-Agent
 - Video traffic
 - Control channel
 - Data channel

FlexStream Architecture
- **End Device**: Context data and policies
- **FlexStream Controller**: Network Monitor, Optimization Module, Policy Manager
- **Media Server**: HTTP Server

Implementation Challenges
- **Rate control on an end device**: extending SDN planes and open flow control to enable controlling the data rate on the end device through TCP flow control mechanism (modifying TCP receiving window).
- **Binding OVS to the cellular interface**: Installing a number of rules to the OVS flow table to rewrite the source/destination IP and MAC addresses with OVS addresses to force all traffic to pass through OVS.

Network Topology
- **Nexus 7 (7")**, **Nexus 4 (4.8")**, **WiFi AP (Ubuntu 14.04)**
- **Bitsavers**: 449,843,1416, 2556 kbps
- **9.00 mm**: Big Buck Bunny
- **Public HTTP server**
- **Proxy server (Squid v3.1)** TC Linux to limit data rate

Sample Results
- **Stability**
 - Phone1, Phone2, Tablet
- **Stall Duration**
 - AP capacity (Mbps)
- **Startup Delay**
 - AP capacity (Mbps)

(*) Big Buck Bunny: https://peach.blender.org

© 2018 AT&T Intellectual Property. All rights reserved. AT&T, the AT&T logo and all other AT&T marks contained herein are trademarks of AT&T Intellectual Property and/or AT&T affiliated companies. The information contained herein is not an offer, commitment, representation or warranty by AT&T and is subject to change.